Linear Algebra I

19/12/2013, Thursday, 14:00-16:00

You are NOT allowed to use any type of calculators.

1 $(6+6+6+6+6=30 \mathrm{pts})$
Linear equations

Let

$$
A=\left(\begin{array}{rrrrr}
1 & 2 & -1 & 0 & 5 \\
2 & 2 & 0 & -2 & 10 \\
-1 & 0 & -1 & 2 & -5 \\
1 & 8 & -7 & 6 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
0 \\
0 \\
\alpha \\
-6
\end{array}\right)
$$

where α is a real number. Consider the linear equation $A x=b$.
(a) Determine the lead and free variables.
(b) Determine all values of α for which the equation has infinitely many solutions.
(c) Determine all values of α for which the equation is inconsistent.
(d) Determine all values of α for which the equation has exactly one solution.
(e) Find the solution set of the equation for $\alpha=0$.

Is the matrix

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
4 & 9 & 16
\end{array}\right)
$$

nonsingular? If so, find its inverse.

3 (20 pts)

Determinants

Let a, b, and c be real numbers. Show that

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right)=(a-b)(b-c)(c-a)
$$

$4 \quad(5+20=25 \mathrm{pts})$
Vector spaces

Consider the vector space P_{4}.
(a) Show that $\left\{p \in P_{4} \mid p(0)=1\right\}$ is not a subspace of P_{4}.
(b) Show that $\left\{p \in P_{4} \mid p(1)=0\right\}$ is a subspace of P_{4}. Find a basis for this subspace. What is the dimension of this subspace?

